
SMARTMAP: Operating System Support for
Efficient Data Sharing Among Processes on a

Multi-Core Processor
Ron Brightwell and Kevin Pedretti
Scable System Software Department

Sandia National Laboratories
Albuquerque, New Mexico 81785–1319

{rbbrigh,ktpedre}@sandia.gov

Trammell Hudson
Operating Systems Research

1527 16th NW #5
Washington, DC 20036
hudson@osresearch.net

Abstract—This paper describes SMARTMAP, an oper-
ating system technique that implements fixed offset virtual
memory addressing. SMARTMAP allows the application
processes on a multi-core processor to directly access each
other’s memory without the overhead of kernel involve-
ment. When used to implement MPI, SMARTMAP elim-
inates all extraneous memory-to-memory copies imposed
by UNIX-based shared memory strategies. In addition,
SMARTMAP can easily support operations that UNIX-
based shared memory cannot, such as direct, in-place
MPI reduction operations and one-sided get/put operations.
We have implemented SMARTMAP in the Catamount
lightweight kernel for the Cray XT and modified MPI
and Cray SHMEM libraries to use it. Micro-benchmark
performance results show that SMARTMAP allows for
significant improvements in latency, bandwidth, and small
message rate on a quad-core processor.

I. I NTRODUCTION

As the core count on processors used for high-
performance computing continues to increase, the per-
formance of the underlying memory subsystem becomes
significantly more important. In order to make effective
use of the available compute power, applications will
likely have to become much more sensitive to the way in
which they access memory. Applications that are mem-
ory bandwidth bound will need to avoid any extraneous
memory-to-memory copies. For many applications, the
memory bandwidth limitation is compounded by the fact
that the most popular and effective parallel program-
ming model, MPI, mandates copying of data between
processes. MPI implementors have worked to make use
of shared memory for communication between processes

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Departmentof
Energy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000.

on the same node. Unfortunately, the current schemes
for using shared memory for MPI can require either
excessive memory-to-memory copies or potentially large
overheads inflicted by the operating system (OS).

In order to avoid the memory copy overhead of MPI
altogether, more and more applications are exploring
mixed-mode programming models where threads and/or
compiler directives are used on-node and MPI is used
off-node. Unfortunately, the complexity of shared mem-
ory programming using threads has hindered both the
development of applications as well as the development
of thread-safe and thread-aware MPI implementations.
The initial attractiveness of mixed-mode programming
was tempered by the additional complexity induced by
finding multi-level parallelism and by initial disappoint-
ing performance results [1], [2], [3]. Recently, however,
unpublished data on mixed-mode applications suggest
more encouraging results on multi-core processors.

In this paper, we introduce a scheme for using fixed-
offset virtual address mappings for the parallel pro-
cesses within a node to enable efficient direct access
shared memory. This scheme, called Simple Mapping
of Address Region Tables for Multi-core Aware Pro-
gramming, or SMARTMAP, achieves a significant per-
formance increase for on-node MPI communications
and eliminates all of the extraneous memory-to-memory
copies that shared memory MPI implementations incur.
SMARTMAP can also be used for more than MPI.
It maps very well to the partitioned global address
space (PGAS) programming model and can be used to
implement one-sided get/put operations, such as those
available in the Cray SHMEM model. This strategy
can also be used directly by applications to eliminate
the need for on-node memory-to-memory copying alto-

gether.
The main contributions of this paper are:
• an OS virtual memory mapping strategy that allows

direct access shared memory between processes on
a multi-core processor

• a description of how this strategy can be used for
on-node data movement between processes on a
multi-core processor

• a detailed analysis of the performance impacts of
using this strategy for MPI peer communication,
MPI collective communication, and Cray SHMEM
data movement operations

The rest of this paper is organized as follows. The
next section provides background on the current ap-
proaches to using shared memory for intra-node data
movement. In Section III, we describe the implemen-
tation of the SMARTMAP and its advantages over other
approaches. Section IV provides a detailed description
of the enhancements that we have made to MPI and
SHMEM implementations on the Cray XT to use it.
Section V presents performance results using several
micro-benchmarks. Relevant conclusions of this paper
are summarized in Section VI, and we close by dis-
cussing possible avenues of future work in Section VII.

II. BACKGROUND

POSIX-based operating systems generally support
shared memory capability through two fundamental
mechanisms: threads and memory mapping. Unlike pro-
cesses, which allow for a single execution context inside
an address space, threads allow for multiple execution
contexts inside a single address space. When one thread
updates a memory location, all of the threads sharing the
same address space also see the update. A major draw-
back of threads is that great care must be taken to ensure
that common library routines are reentrant, meaning that
multiple threads could be executing the same piece of
code simultaneously. For non-reentrant functions, some
form of locking must be used to ensure atomic execution.
The same is true for data accessed by multiple threads
– updates must be atomic with respect to one another or
else difficult to debug race conditions will occur. Race
conditions and fundamentally non-deterministic behavior
make threads difficult to use correctly.

In memory mapping, cooperating processes request a
shared region of memory from the operating system and
then map it into their private address space, possibly at a
different virtual address in each process. Once initialized,
a process may access the shared memory region in
exactly the same way as any other memory in its private
address space. As with threads, updates to shared data
structures in this region must be atomic.

Explicit message passing is an alternative to shared
memory for intra-node data sharing. In message pass-
ing, processes pass messages carrying data between
one another. No data is shared directly, but rather is
copied between processes on an as necessary basis. This
eliminates the need for re-entrant coding practices and
careful updates of shared data, since no data is shared.
The main downside to this approach is the extra overhead
involved in copying data between processes.

In order to accelerate message passing, memory map-
ping is often used as a high-performance mechanism for
moving messages between processes [4]. Unfortunately,
such approaches to using page remapping are not suf-
ficient to support MPI semantics, and general-purpose
operating systems lack the appropriate mechanisms. The
sender must copy the message into a shared memory
region and the receiver must copy it out – a minimum
of two copies must occur. It would be ideal if messages
could be moved directly between the two processes with
a single copy. This would be possible if all processes
operated entirely out of the shared memory region, but
this would amount to the processes essentially becoming
threads, with all of their inherit problems. Furthermore,
message passing APIs such as MPI allow message
buffers to be located anywhere in an address space,
including the process’s data, heap and stack.

As of MPI 2.0, MPI applications may make use
of both threads and memory mapping, although few
MPI implementations provide full support for threads.
More commonly, MPI implementations utilize memory
mapping internally to provide efficient intra-node com-
munication. During MPI initialization, the processes on
a node elect one process to create the shared memory
region and then the elected process broadcasts the in-
formation about the region to the other processes on
the node (e.g., via a file or the sockets API). The
other processes on the node then “attach” to the shared
memory region, by requesting that the OS map it into
their respective address spaces.

Note that the approach of using shared memory for
intra-node MPI messages only works for the point-to-
point operations, collective communication operations,
and a subset of the MPI-2 remote memory access
operations. Copying mandates active participation of
the two processes involved in the transfer. Single-sided
put/get operations, such as those in the Cray SHMEM
programming interface, cannot be implemented using
POSIX shared memory.

A. Intra-Node MPI

There are several limitations in using regions of shared
memory to support intra-node MPI [5], [6], [7]. First,

2

the MPI model doesn’t allow applications to allocate
memory out of this special shared region, so messages
must first be copied into shared memory by the sender
and then copied out of the shared region by the receiver.
This copy overhead can be a significant performance
issue. Typically there is a limitation on the amount of
shared memory that a process can allocate, so the MPI
implementation must make decisions about how to most
effectively use this memory in terms of how many per-
process messages to support relative to the size of the
contents of each message. The overhead of copying
messages using shared memory has led researchers to
explore alternative single-copy strategies for intra-node
MPI message passing.

One such strategy is to use the operating system to
perform the copy between separate address spaces [8].
In this method, the kernel maps the user buffer into
kernel space and does a single memory copy between
user space and kernel space. The drawback of this
approach is that the overhead of trapping to the ker-
nel and manipulating memory maps can be expensive.
Another limitation is that all transfers must be serialized
through the operating system. As the number of cores
on a node increases, serialization and management of
shared kernel data structures for mapping is likely to be
a significant performance limitation. Another important
drawback of this approach is that there are two MPI
receive queues – one in the MPI library and one in the
kernel. When the application posts a non-specific receive
usingMPI_ANY_SOURCE, great care must be taken to
insure that the atomicity and ordering semantics of MPI
are preserved. There is a potential race for a non-specific
receive request to be satisfied by both the MPI library
and the operating system. Managing atomicity between
events in kernel space and user space is non-trivial.

Another strategy for optimizing intra-node transfers is
to use hardware assistance beyond the host processors.
The most common approach is to use an intelligent or
programmable network interface to perform the transfer.
Rather than sending a local message out to the network
and back, the network interface can simply use its DMA
engines to do a single copy between the communicat-
ing processes. The major drawback of this approach
is serialization through the network interface, which is
typically much slower than the host processor(s). Also,
large coherent shared memory machines typically have
hardware support for creating a global shared memory
environment. This hardware can also be used when
running distributed memory programs to map arbitrary
regions of memory to provide direct shared memory
access between processes. SGI’s NUMAlink hardware

is one such example [9]. The obvious drawback of this
approach is the additional cost of this hardware.

A comprehensive analysis of the different approaches
for intra-node MPI communication was presented
in [10]. More recently, a two-level protocol approach
that uses shared memory regions for small messages and
OS support for page remapping individual buffers for
large messages was proposed and evaluated [11]. There
has also been some recent work on optimizing MPI
collective operations using shared memory for multi-core
systems [12].

B. Intra-Node Communication on the Cray XT

All communication between processes on the Cray XT
use the Portals [13] data movement layer. Two imple-
mentations of Portals are available for the SeaStar [14]
network. The default implementation is interrupt driven
and all Portals data structures are contained inside the
operating system. When a message arrives at the SeaStar,
it interrupts the Opteron host processor, which then
inspects the message header, traverses the Portals data
structures and programs the DMA engines on the SeaStar
to deliver the message to the appropriate location in
the application process’ memory. This implementation is
referred to as “Generic Portals” (GP) because it works
for both Catamount on compute nodes and in Linux
on service and I/O nodes. The other implementation
supports a complete offload of Portals processes and uses
no interrupts. When a message arrives at the SeaStar, all
of the Portals processing occurs on the SeaStar itself.
This implementation is known as “Accelerated Portals”
(AP) and is available only on Catamount, largely due to
the simplified address translation that Catamount offers.

For intra-node transfers, the Generic Portals imple-
mentation takes advantage of the fact that Portals struc-
tures for both the source and destination are in kernel
space. The kernel is able to traverse the structures and
perform a single memory copy to move data between
processes, since all of user space is also mapped into
kernel space. At large message sizes, it becomes more
efficient for the kernel to use the DMA engines on the
SeaStar to perform the copy, so there is a crossover
point where it switches to using this approach. For
the Accelerated Portals implementation, all Portals data
structures are in SeaStar memory, so it must traverse
these structures in the same way it does for incoming
network messages, so there is little advantage to intra-
node transfers. In fact, intra-node transfers are slower
going through the SeaStar rather then the operating
system, due to the speed of the host processor (2+ GHz)
relative to the network processor (500 MHz).

3

III. SMARTMAP I MPLEMENTATION

SMARTMAP is a virtual memory mapping technique
that allows for direct access shared memory between
the processes running on a multi-core processor. This
technique leverages many of the characteristics of a
lightweight compute node kernel to achieve shared mem-
ory capability without the limitations of POSIX shared
memory mapping or the complexity of multi-threading.
SMARTMAP preserves the idea of running a single
execution context within a separate address space, but
also provides the ability to easily access the address
space of the other execution contexts within the same
parallel job on the same node. The following provides a
description the implementation of SMARTMAP and its
advantages over existing approaches for intra-node data
movement.

A. Catamount

The Catamount lightweight kernel [15] is a third-
generation compute node operating system developed
by Sandia National Laboratories along with Cray, Inc.,
as part of the Red Storm project [16]. Red Storm is
the prototype for what has become the commercially
successful Cray XT line of massively parallel processing
systems. Catamount has several unique features that
are designed to optimize performance and scalability
specifically for a distributed memory message passing-
based parallel computing platform.

One such important feature is memory management.
Unlike traditional UNIX-based operating systems, Cata-
mount does not support demand-paged virtual memory
and uses a linear mapping from virtual addresses to
physical pages of memory. This approach can potentially
have several advantages. For instance, there is no need
to register memory or “lock” memory pages involved
in network transfers to prevent the operating system
from unmapping or remapping pages. The mapping
in Catamount is done at process creation time and is
never changed. This greatly simplifies translation and
validation of virtual address for the network interface.
Virtual address validation is a simple bounds check and
translating virtual addresses to physical addresses is a
simple offset calculation.

The SMARTMAP approach for direct access shared
memory takes advantage of Catamount’s simple memory
management model, specifically the fact that Catamount
only uses a single entry in the top-level page table map-
ping structure (PML4) on each X86-64 (AMD Opteron
or Intel EM64T) core. Each PML4 slot covers 39 bits
of address space, or 512 GB of memory. Normally,
Catamount only uses the first entry covering physical

1 s t a t i c vo id i n i t i a l i z e s h a r e d m e m o r y (vo id)
2 {
3 e x t e r n VA PML4T ENTRY ∗KN pml4 table cpu [] ;
4 i n t cpu ;
5 f o r (cpu=0 ; cpu< MAX NUM CPUS ; cpu++){
6 VA PML4T ENTRY ∗ pml4 = KN pml4 table cpu [cpu] ;
7 i f (! pml4)
8 co n t i n u e ;
9 KERNEL PCB TYPE ∗ kpcb = (KERNEL PCB TYPE∗) KN cur kpcb ptr [cpu] ;

10 i f (! kpcb) co n t i n u e ;
11 VA PML4T ENTRY d i r b a s e p t r = (VA PML4T ENTRY)
12 (KVTOP((s i z e t) kpcb−>k p cb d i r b as e) | PDE P | PDE W | PDE U) ;
13 i n t o t h e r ;
14 f o r (o t h e r=0 ; o t h e r<MAX NUM CPUS ; o t h e r++){
15 VA PML4T ENTRY ∗ o ther pml4 = KN pml4 table cpu [o t h e r] ;
16 i f (! o ther pml4) co n t i n u e ;
17 o ther pml4 [cpu+1] = d i r b a s e p t r ;
18 }
19 }
20 }

Fig. 1: SMARTMAP kernel code

1 s t a t i c i n l i n e vo id ∗ r emo t e ad d r es s (uns igned core ,
2 v o l a t i l e vo id ∗ vaddr)
3 {
4 u i n t p t r t addr = (u i n t p t r t) vaddr ;
5 addr |= ((u i n t p t r t) (co r e +1))<< 39 ;
6 r e t u r n (vo id∗) addr ;
7 }

Fig. 2: User function for convert-
ing a local virtual address to a
remote virtual address

addresses in the range0x0 to 0x007FFFFFFFFF. The
X86-64 architecture supports a 48-bit address space, so
there are 512 entries in the PML4.

Each core writes the pointer to its PML4 table into an
array at core 0 when a new parallel job is started. Each
time the kernel enters the routine to run the user-level
process, it copies all of the PML4 entries from each core
into the local core. This allows every core on a node to
see every other core’s view of the virtual memory across
the node, at a fixed offset into its own virtual address
space. Figure 1 shows the 20 lines of kernel code that
implement direct access shared memory in Catamount.

Another feature of Catamount is that the mapping
of virtual addresses for the same executable image is
identical across all of the processes on all of the nodes.
The starting address of the data, stack, and heap is the
same. This means that the virtual address of variables
with global scope is the same everywhere. The Cray
SHMEM environment refers to such addresses assym-
metric addresses, whereas other addresses, such as those
allocated off of the stack as the application is running,
are termed to benon-symmetric. Figure 2 shows the user-
level function for converting alocal virtual address into
a remote virtual address for a process on a different
core. Symmetric addresses combined with this simple
remote address translation function make it extremely
easy for one process to read or write the corresponding

4

data structure in another process’ address space running
on a different core of the same processor.

Catamount’s memory management design is much
simpler than a general-purpose OS like Linux. Linux
memory management is based on the principle that pro-
cesses execute in different address spaces and threads ex-
ecute in the same address space. Most architecture ports,
x86 included, maintain a unique set of address translation
structures (e.g., a page table tree on x86) for each process
and a single set for each group of threads. SMARTMAP
operates differently in that a process’s address space and
associated translation structures are neither fully-unique
or fully-shared. For example, SMARTMAP on the x86
architecture maintains a unique top-level page table (the
PML4) for each process; however, all processes share a
common set of leaves linked from this top-level table.
Linux memory management does not support this form
of page-table sharing, so each process must be given a
replicated copy of each shareable leaf. This results in
more memory being wasted on page tables (2 MB per
GB of address space on x86) and a larger cache footprint
than necessary. Modifications to Linux to support sharing
a single page table entry for shared memory mapped
regions has been proposed, but the changes have not
been accepted in the mainline kernel.

B. Limitations

SMARTMAP is currently limited to what the top-
level X86-64 page table supports – 511 processes (one
slot is needed for the local process) and 512 GB of
memory per process. However, this will likely be suf-
ficient for a typical compute node for the foreseeable
future. Since Catamount only runs on X86-64 proces-
sors, SMARTMAP is currently limited to this processor
family as well. However, the concepts are generally
applicable to other architectures that support virtual
memory. For example, even though the PowerPC uses
an inverted page table scheme that is very different from
x86-64, the hardware’s support for segmentation can be
used to implement SMARTMAP just as efficiently. On
other architectures with software-based virtual memory
support (i.e., a software managed translation look-aside
buffer), SMARTMAP is straightforward to implement.

IV. U SING SMARTMAP

We have used the SMARTMAP capability in Cata-
mount to optimize intra-node data movement for the
Cray SHMEM one-sided operations, as well as for MPI
point-to-point and collective operations. This section
describes the modifications to these libraries.

1 vo id shmemputmem(vo id ∗t a r g e t , vo id ∗source , s i z e t l en g t h , i n t pe)
2 {
3 i n t co r e ;
4
5 i f ((co r e = s map p e i s l o ca l (pe)) != −1) {
6 vo id ∗ t a r g e t r = (vo id ∗) r emo t e ad d r es s (co re , t a r g e t) ;
7 memcpy (t a r g e t r , source , l e n g t h) ;
8 } e l s e {
9 pshmemputmem (t a r g e t , source , l en g t h , pe) ;

10 }
11 }

Fig. 3: SHMEM Put Function

A. Cray SHMEM

The Cray SHMEM library was first available on the
Cray T3 series of machine circa 1994. It supports a
variety of one-sided get/put data movement functions as
well as collective reduction functions and remote atomic
memory operations, such as atomic-swap and fetch-and-
increment.

The existing implementation for Catamount on the
Cray XT uses Portals for all data movement operations.
Similar to MPI’s profiling interface, Cray has imple-
mented an alternative library interface to all SHMEM
functions to support user-level redefinition of library
routines. All functions are defined as weak symbols with
a set of shadow functions whose names are prefaced by
a ’p’. For example, the library definesshmem_put()
as a weak symbol and definespshmem_put() as the
actual function. This makes it possible for an application
to define it’s own version of the function that in turn calls
the underlying library function. This mechanism makes
it easy to extend the implementation to use SMARTMAP
for intra-node transfers.

At library initialization time, we determine which
destination ranks are on the local node. We do this
using information from the Catamount runtime sys-
tem that conveys the rank, node id, and core of each
process in the job. We actually use the SMARTMAP
capability for each process on a node to determine a
global rank to core rank mapping. Once this mapping
is determined, we simply add logic to each function to
determine whether the destination process is on-node
or off-node. For on-node communications, we use the
virtual address conversion function to determine the
remote virtual address to use and then perform the
appropriate operation. If the destination rank is off-
node, we fall through to the actual function. Figure 3
shows the implementation of theshmem_putmem()
routine using SMARTMAP. We have done this for the
basic put and get operations in order to measure the
performance gain from SMARTMAP. Implementations
of the strided get/put operations as well as the atomic
memory operations would be similarly straightforward.

5

Changes to the internal implementation of the collective
operations would be needed to differentiate between on-
node and off-node data movement.

B. MPI Point-to-Point Communication

We have modified the Open MPI implementation to
make use of SMARTMAP. We chose Open MPI because
it is the only open-source implementation that supports
shared memory that already has support for the Cray
XT. Recently, Cray has released an implementation of
MPI for their compute node Linux environment that
supports shared memory. However, this implementation
is encumbered with SGI contributions and is not avail-
able outside of Cray. Cray is continuing to maintain a
completely separate MPI implementation for Catamount,
which is also not available as open source. The modular
component-based architecture of Open MPI also simpli-
fies the introduction of a new transport layer.

There are two different paths that Open MPI can use
for MPI point-to-point communications using Portals.
The default path is to use a PML module that implements
MPI matching semantics inside the MPI library and
uses the underlying Byte Transport Layer (BTL) to
simply move bytes. This layer can make use of several
BTL modules at one time, including shared memory
or the network as appropriate for the destination. The
second path is for the PML to use a Matching Transport
Layer (MTL). This path assumes that the underlying
module is responsible for implementing MPI matching
semantics. Unlike the BTL, there can only be one of
these modules in use at any given time. An important
distinction between these two paths is the location of
the MPI receive queue. For the BTLs, the MPI receive
queue is inside the library, but for an MTL, the receive
queue is managed outside of the MPI library.

We modified both the shared memory BTL in Open
MPI as well as the Portals MTL to use SMARTMAP.
This approach allows us to better quantify the advantage
of avoiding an extra copy in the shared memory BTL.

Relatively few changes were necessary to allow the
shared memory BTL to use SMARTMAP. Rather than
having the individual processes usemmap() to map the
same block of shared memory, the core 0 process on
a node simply publishes the location of the block of
memory that it has allocated from its local heap. Using
SMARTMAP, the other processes read this location from
core 0’s memory and convert it to the appropriate remote
address.

More extensive changes were required to enable the
Portals MTL to use SMARTMAP. A detailed description
of a prototype of this implementation can be found
in [17]. The prototype only had support for intra-node

transfers, but it has since been extended to support both
on-node and off-node communication. This implementa-
tion has two posted receive queues – one inside Portals
for off-node transfers and one inside the MPI library for
on-node transfers – so it is subject to the same complex-
ity that other such implementations are. In particular,
non-specific receives are not currently fully supported.
If a receive request usingMPI_ANY_SOURCE cannot
be immediately completed, a failure is returned. We
are currently extending the implementation to handle
this situation. We do not expect this extra logic to
have a significant impact on performance, especially for
communication micro-benchmarks and codes that do not
employ a large number of wildcard receive requests.

A key difference between the BTL and MTL im-
plementations is that the BTL is able to copy user
data along with the MPI envelope information, allowing
for short send operations to complete before the data
has actually been transfered to the receiver’s buffer.
Given that the focus of SMARTMAP is to decrease the
number of memory-to-memory copies, we chose not to
employ this optimization for the MTL. Therefore, short
messages using SMARTMAP are synchronous – the data
is only copied when the matching receive buffer has been
posted.

C. MPI Collective Communication

We have also created an Open MPI collective commu-
nication module that uses SMARTMAP to implement the
barrier, broadcast, reduce, allreduce, and alltoall collec-
tive operations. We briefly describe the implementation
here.

The SMARTMAP collective module uses a structure
containing the following information:

• counter
• context
• address
• turn
• finished

This structure is globally-scoped so that it is at the
same memory location in all of the processes on a
node. The first two items,counter and context,
are specific to the MPI communicator involved in the
collective operation. Since MPI collective operations are
blocking, a process can be participating in at most one
collective at a time. The communicator’scounter is
incremented each time a collective operation is started
and the context is used to identify the specific
communicator that is being used. This prevents sub-
communicators in overlapping collective operations from
interfering with each other.

6

When a process enters a collective operation, it first
determines whether it is the root of the collective
operation, For non-rooted operations, the root defaults
to rank 0 within the communicator. Once the root is
determined, the process determines the core on which
the root process is running. If a process is not the root,
it gets the remote address of the collective structure in the
root process’ address space and waits for thecounter
andcontext values to indicate that the root has entered
the same collective operation.

For the barrier operation, the root process initializes
the finished value to 1, sets thecounter and
context values appropriately, and then spins on this
value waiting for it to be equal to the size of the commu-
nicator. Once the non-root processes enter the collective
operation, they increment thefinished value in the
root’s address space using an assembly language atomic
increment operation. As with the root, they also spin
waiting for this value to be equal to the size of the
communicator.

For the broadcast operation, the root process again ini-
tializes thefinished value to 1 and sets theaddress
value to the location of the user buffer. It then waits
for the other processes to increment thefinished
value. Once the non-root processes enter the collective
operation, they read theaddress value in the other
process’ address space, convert this value to a remote
address, and then copy the data from the source buffer
directly to the destination buffer in its address space.
When the copy is complete, the process atomically
increments thefinished value.

For the reduce operation, the root process first
copies the send buffer to the receive buffer (provided
the MPI IN PLACE flag is not used), initializes the
finished value to 1, and initializes theturn value
to 0. It sets thecontext and counter values, and
then proceeds as the non-root processes do. Once in the
collective operation, a non-root process recognizes the
destination address and converts it to a remote address
in the root core’s address space. It then waits for the
turn value to be equal to its rank. Once this occurs,
the process performs the reduce operation with the its
buffer and the root’s buffer. When the reduce operation
is complete, it atomically increments theturn value
to let the next rank proceed, and atomically increments
the finished value to indicate that it is done. When
the root process’ turn is up, it simply increments the
counter to let the following rank proceed. As with the
other SMARTMAP collectives, the root waits for the
finished value to reach the size of the communicator.

Currently, the allreduce operation is implemented as a

reduce followed by a broadcast. The alltoall operation is
implemented as a broadcast with each process taking
turns being the root. The current implementation of
alltoall is cache friendly, since all cores are copying the
same buffer at the same time. An alternative implemen-
tation could allow for each process to copy its chunk of
data to the other processes.

V. PERFORMANCEEVALUATION

A. Test Environment

The platform used to gather our performance results is
a Red Storm development system that contains four 2.2
GHz quad-core Opterons. We have added SMARTMAP
capability to the Catamount N-Way (CNW) kernel ver-
sion 2.0.41. Our changes to Open MPI were performed
on the head of the development tree.

For intra-node results, we limited our results to the
interrupt-driven version of Portals because it is more
efficient at intra-node transfers. The ability to have the
operating system perform a copy between processes
outperforms having the SeaStar adapter do the copy. Due
to limitations of the SeaStar, send operations must go
through the OS, so in addition to serializing requests
through a slower network interface, requests must also
be serialized through the OS.

B. SHMEM

Figure 4 shows the ping-pong latency and bandwidth
performance for a Cray SHMEM put operation using the
default implementation and the SMARTMAP-enabled
implementation as measured with the NetPIPE [18]
benchmark. Single-byte latency for the default imple-
mentation is more than 5µs, while the SMARTMAP
latency is 230 ns. Bandwidth performance for the
SMARTMAP-enabled SHMEM also significantly out-
performs the default implementation, having a much
steeper curve and achieving much higher asymptotic
performance. The erratic nature of the bandwidth curve
for the SMARTMAP-enabled SHMEM is due to the
sensitivity of the memory sub-system to misalignment
as a result of the various transfer lengths that NetPIPE
uses. The dip at 32 KB is repeatable and is also likely
due to the memory hierarchy, since this is half of the
size of the first-level cache. We used a memory copy
routine with non-temporal stores, which we believe is
responsible for the jump in bandwidth performance at 2
MB. For SHMEM over Portals, the crossover point from
using shared memory to using the network is clearly
visible at 512 KB.

7

 0

 1

 2

 3

 4

 5

 6

 1 10 100 1000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

shmem-smap
shmem

(a) Latency

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

shmem
shmem-smap

(b) Bandwidth

Fig. 4: SHMEM Put Performance

C. MPI Point-to-Point

Figure 5 shows the performance of widely-used Intel
MPI Benchmark suite version 2.3 for the point-to-point
operations. We compare the default Portals BTL (btl-gp)
and MTL (mtl-gp) with the shared memory BTL (btl-sm)
using SMARTMAP and the SMARTMAP Portals MTL
(mtl-smap).

Ping-pong latency performance is shown in Fig-
ure 5(a). The Portals MTL with SMARTMAP is able
to achieve a zero-byte latency of 630 ns, with the shared
memory BTL using SMARTMAP slightly higher at 830
ns. This is a significant improvement over the 3µsPortals
MTL, where the OS performs the memory copy between
the processes. The difference in performance between the
MTL and BTL is likely due to the additional memory
operations needed by the BTL to enqueue a request
in a shared data structure. For the MTL, each process
has exclusive access to the data structures necessary for
enqueing a request.

Ping-pong bandwidth performance is shown in Fig-
ure 5(b). Here again we see that the SMARTMAP-

enabled MTL is able to outperform the others, peaking
at 9.4 GB/s. This is significantly higher than the peak
5.7 GB/s of the Portals MTL without SMARTMAP. We
can also see that the performance of the shared memory
BTL starts to be affected by doing two memory copies
rather than one. Unlike the previous SHMEM bandwidth
test that uses NetPIPE, the IMB bandwidth test does
not actually read the receive buffer, so the improved
performance of MPI over SHMEM is due to cache
effects.

Figures 5(c) and 5(d) show performance for the IMB
Sendrecv and Exchange benchmarks. We chose these
benchmarks to illustrate the capability of SMARTMAP
to allow for simultaneous communications within
a node. The Sendrecv benchmark measures perfor-
mance between pairs of processes communicating with
the MPI_Sendrecv() function, while the Exchange
benchmark measures the performance of exchanging
data with a pair of neighbor processes. The Portals
BTL and MTL are limited by serialization through the
OS, while with the shared memory based transports,
the processes are able to communicate without any
serialization. We can also see the penalty that the two-
copy shared memory strategy has for these operations as
well.

Another important measurement of MPI point-to-point
performance is message rate. We used the PathScale
(now QLogic) MPI message rate benchmark, which is
a modified version of an MPI bandwidth benchmark
from Ohio State University. The original benchmark
was enhanced to support reporting message rate as
well as bandwidth, to calculate and report theN1/2

message size and rate, and to allow for running multiple
processes per node to calculate aggregate performance.
Figures 6(a) and 6(a) show the message rate for one
pair of communicating processes and two pairs of pro-
cesses respectively. For one pair, the shared memory
BTL is able to achieve more than 3.5 million messages
per second, while the Portals MTL with SMARTMAP
achieves about 2.4 million message per second. The
non-SMARTMAP layers achieve less than 300 thousand
messages per second. The memory copies in the shared
memory BTL allow for decoupling the sender and the
receiver. For short messages, the BTL is able to copy
the message into shared memory and, from the MPI
perspective, the send is complete. However, since the
SMARTMAP MTL is synchronous, it does not perform
the memory copy until the receiver has posted a receive
request. The overhead of this synchronization degrades
message rate performance, but the single-copy ability of
SMARTMAP eventually catches up at larger message

8

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(m

ic
ro

se
co

nd
s)

Message size (bytes)

btl-gp
mtl-gp
btl-sm

mtl-smap

(a) MPI PingPong Latency

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

M
B

/s

Message size (bytes)

btl-gp
mtl-gp
btl-sm

mtl-smap

(b) MPI PingPong Bandwidth

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(m

ic
ro

se
co

nd
s)

Message size (bytes)

btl-gp
mtl-gp
btl-sm

mtl-smap

(c) MPI Exchange

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(m

ic
ro

se
co

nd
s)

Message size (bytes)

btl-gp
mtl-gp
btl-sm

mtl-smap

(d) MPI Sendrecv

Fig. 5: IMB MPI Point-to-Point Results

sizes. For two pairs of processes, message rate for
the MTL scales nearly linearly, almost doubling to 4.6
million messages per second, while the BTL rate remains
constant. The message rate actually decreases slightly for
the Portals-based transports.

We finish our analysis of MPI point-to-point commu-
nication with a halo exchange benchmark from Argonne
National Lab. We ran this benchmark across four quad-
core nodes using sixteen processes. The results are
shown in Figure 7. Unlike the intra-node performance
results, this benchmark shows the advantage of the AP
version of Portals. The Portals MTL with SMARTMAP
enabled allows for efficient on-node transfers, while the
AP implementation of Portals allows for more efficient
off-node transfers.

D. MPI Collectives

Figure 8 shows performance for the broadcast, reduce,
allreduce, alltoall, and barrier MPI collective operations
on a single quad-core node. This graph also includes per-
formance of the SMARTMAP collective module (smap-
coll). As with the point-to-point operations, we can
again see the significant performance gain for using
SMARTMAP. For the broadcast and alltoall operations
in Figures 8(a) and 8(d) respectively, we can also see
the advantage that the single copy approach has for
larger message sizes over the two-copy approach of the
shared memory BTL. Barrier performance in Figure 8(e)
demonstrates the advantage of using a counter in shared
memory rather than using message passing in shared
memory.

9

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 1 10 100 1000 10000 100000 1e+06 1e+07

M
es

sa
ge

s/
S

ec
on

d

Message Size (Bytes)

btl-sm
mtl-smap

mtl-gp
btl-gp

(a) One pair

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 1 10 100 1000 10000 100000 1e+06 1e+07

M
es

sa
ge

s/
S

ec
on

d

Message Size (Bytes)

btl-sm
mtl-smap

mtl-gp
btl-gp

(b) Two pairs

Fig. 6: MPI Message Rate

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 10000 20000 30000 40000 50000 60000 70000

T
im

e
(s

ec
on

ds
)

Message Size (bytes)

mtl-ap
btl-ap
btl-gp
mtl-gp

mtl-smap-gp
mtl-smap-ap

Fig. 7: MPI Halo Exchange Performance

VI. CONCLUSION

The SMARTMAP capability in Catamount is able to
deliver significant performance improvements for intra-
node MPI point-to-point and collective operations. It is
able to dramatically outperform the current approaches
for intra-node data movement using Portals on the Cray
XT. We expect the shared memory BTL performance
to be similar to what Cray’s Compute Node Linux
(CNL) environment could achieve using shared memory
in Linux. However, we have also shown that the single-
copy ability of SMARTMAP in Catamount is able to
significantly outperform the mulitple-copy approach that
must be used in a POSIX-based shared memory envi-
ronment like Linux. Additionally, SMARTMAP can sup-
port operations that Linux shared memory cannot. First,
SMARTMAP can eliminateall extraneous memory-to-
memory copies for intra-node MPI communications.
This is a significant advantage in light of the growing
memory bandwidth limitation of multi-core processors.
SMARTMAP can also support true one-sided get/put
operations and extremely efficient collective operations,
including the ability to perform reduction operations
directly on the destination buffer.

VII. F UTURE WORK

There is more work left to do to fully utilize the
SMARTMAP capability for MPI. First, because the
Portals data movement layer encapsulates the MPI
posted receive queue, the complexity of handling
MPI_ANY_SOURCE receives is significantly increased.
The current implementation does not fully support non-
specific receives, but we do not expect the logic needed
to support them to significantly impact performance.
We would also like to implement single-copy non-
contiguous data transfers and MPI-2 remote memory
access operations.

We are currently working on additional collective op-
erations for the SMARTMAP collective module, specif-
ically the gather operations. We would like to do an
in-depth analysis of collective performance using Open
MPI’s hierarchical collective module, where on-node
collectives would use the SMARTMAP module in com-
bination with a network-based collective module.

With the recent release of a Cray implementation of
MPI for CNL that supports shared memory transfers,
we would like to do an in-depth analysis of on-node
MPI communication performance between Catamount
and CNL.

Once we have complete point-to-point and collective
layers, we would also like to perform and in-depth analy-
sis of application performance. Our current 4-node quad-
core environment is not sufficient to analyze application

10

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(m

ic
ro

se
co

nd
s)

Message size (bytes)

btl-gp
mtl-gp
btl-sm

mtl-smap
smap-coll

(a) MPI Broadcast

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(m

ic
ro

se
co

nd
s)

Message size (bytes)

btl-gp
mtl-gp
btl-sm

mtl-smap
smap-coll

(b) MPI Reduce

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(m

ic
ro

se
co

nd
s)

Message size (bytes)

btl-gp
mtl-gp
btl-sm

mtl-smap
smap-coll

(c) MPI Allreduce

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(m

ic
ro

se
co

nd
s)

Message size (bytes)

btl-gp
mtl-gp
btl-sm

mtl-smap
smap-coll

(d) MPI Alltoall

 0

 10

 20

 30

 40

 50

 60

 70

2 4

T
im

e
(m

ic
ro

se
co

nd
s)

Processes

btl-ap
btl-gp
mtl-ap
mtl-gp

mtl-smap
btl-sm

smap-coll

(e) MPI Barrier

Fig. 8: IMB MPI Collective Performance

11

performance and scalability. The center section of the
Red Storm system, approximately six thousand nodes,
will soon be upgraded to quad-core processors, and we
expect to perform an exhaustive analysis of applications
as part of the upgrade. It would also be interesting
to measure SMARTMAP performance on larger core
counts, such as a dual-socket quad-core Cray XT5 node.

SMARTMAP is also a natural fit for implementation
of the Partitioned Global Address Space (PGAS) Model.
The implementations of Unified Parallel C, Co-Array
Fortran, and Global Arrays could be enhanced to lever-
age SMARTMAP capabilities.

We are also exploring ways for applications to use the
SMARTMAP capability directly, through library inter-
faces that allow processes to do direct remote loads and
stores. We currently have MPI applications that are con-
ducive to recoding pieces of them to use shared-memory
style communications. The advantage of SMARTMAP
for this is that we can avoid the memory copy overhead
of using MPI and also avoid the complexity of mixing
MPI with threads or OpenMP compiler directives.

Finally, we are also considering exposing the topology
of the underlying machine to applications using MPI
communicators. We can easily create communicators
to be used for on-node or off-node communications
(e.g, MPI_COMM_NODE and MPI_COMM_NET). Some
applications may be able to decompose communication
into two levels to better leverage the advantages of intra-
node communication performance.

VIII. A CKNOWLEDGMENTS

The implementation of SMARTMAP would not have
been possible without the efforts of John Van Dyke,
who is responsible for implementing virtual node mode
support in Catamount. Kurt Ferreira also provided many
useful discussions regarding virtual memory mapping
and lightweight kernel memory management. The au-
thors also gratefully acknowledge the assistance of Sue
Kelly and the Cray support staff at Sandia with the Red
Storm development systems. We would also like to thank
the anonymous reviewers for their helpful comments and
suggestions.

REFERENCES

[1] F. Cappello and D. Etiemble, “MPI versus MPI+OpenMP on IBM
SP for the NAS benchmarks,” inProceedings of the ACM/IEEE
International Conference on High-Performance Computing and
Networking (SC’00), November 2000.

[2] D. S. Henty, “Performance of hybrid message-passing and
shared-memory parallelism for discrete element modeling,” in
Proceedings of the ACM/IEEE International Conference on High-
Performance Computing and Networking (SC’00), November
2000.

[3] S. Dong and G. E. Karniadakis, “Dual-level parallelism for
deterministic and stochastic CFD problems,” inProceedings of
the ACM/IEEE International Conference on High-Performance
Computing and Networking (SC’02).

[4] P. Druschel and L. L. Peterson, “Fbufs: A high-bandwidth
cross-domain transfer facility,”ACM SIGOPS Operating Systems
Review, vol. 27, no. 5, pp. 189–202, December 1993.

[5] D. Buntinas, G. Mercier, and W. Gropp, “Implementation and
evaluation of shared-memory communication and synchroniza-
tion operations in MPICH2 using the Nemesis communication
subsystem,”Parallel Computing, vol. 33, no. 9, pp. 634–644,
September 2007.

[6] ——, “Implementation and shared-memory evaluation of
MPICH2 over the Nemesis communication subsystem,” inPro-
ceedings of the 2006 European PVM/MPI Users’ Group Meeting,
September 2006.

[7] ——, “Design and evaluation of Nemesis, a scalable, low-latency,
message-passing communication subsystem,” inProceedings of
the 2006 International Symposium on Cluster Computing and the
Grid, May 2006.

[8] H.-W. Jin, S. Sur, L. Chai, and D. K. Panda, “Limic: Support
for high-performance MPI intra-node communication on Linux,”
in Proceedings of the 2005 Cluster International Conference on
Parallel Processing, June 2005.

[9] K. Feind and K. McMahon, “An ultrahigh performance MPI
implementation on SGI ccNUMA Altix systems,” inProceedings
of the SGI Users’ Group Technical Conference, June 2006.

[10] D. Buntinas, G. Mercier, and W. Gropp, “Data transfers between
processes in an smp system: Performance study and application
to mpi,” in Proceedings of the 2006 International Conference on
Parallel Processing, August 2006.

[11] L. Chai, P. Lai, H.-W. Jin, and D. K. Panda, “Designing aneffi-
cient kernel-level and user-level hybrid approach for MPI intra-
node communication on multi-core systems,” inProceedings of
the International Conference on Parallel Processing, September
2008.

[12] R. L. Graham and G. Shipman, “MPI support for multi-core
architectures: Optimized shared memory collectives,” inProceed-
ings of the 15th European PVM/MPI Users’ Group Conference,
September 2008.

[13] R. Brightwell, T. Hudson, K. Pedretti, R. Riesen, and K.Un-
derwood, “Implementation and performance of Portals 3.3 on
the Cray XT3,” in Proceedings of the 2005 IEEE International
Conference on Cluster Computing, September 2005.

[14] R. Brightwell, T. Hudson, K. T. Pedretti, and K. D. Underwood,
“SeaStar interconnect: Balanced bandwidth for scalable perfor-
mance,”IEEE Micro, vol. 26, no. 3, May/June 2006.

[15] S. M. Kelly and R. Brightwell, “Software architecture of the light
weight kernel, Catamount,” inProceedings of the 2005 Cray User
Group Annual Technical Conference, May 2005.

[16] W. J. Camp and J. L. Tomkins, “Thor’s hammer: The first
version of the Red Storm MPP architecture,” inIn Proceedings of
the SC 2002 Conference on High Performance Networking and
Computing, Baltimore, MD, November 2002.

[17] R. Brightwell, “A prototype implementation of MPI for
SMARTMAP,” in Proceedings of the 15th European PVM/MPI
Users’ Group Conference, September 2008.

[18] Q. O. Snell, A. Mikler, and J. L. Gustafson, “NetPIPE: A network
protocol independent performance evaluator,” inProceedings of
the IASTED International Conference on Intelligent Information
Management and Systems, June 1996.

12

